

DATA SECURITY & & CRYPTOGRAPHY FOURTH STAGE

University of Basrah
College of Education for Pure Science
Computer Science Department

Prof. Dr. Eng. Hamid AL-Asadi 2016-2017

DATA SECURITY & CRYPTOGRAPHY

- General Introduction
- Introduction to Number Theory
- Classical Encryption Techniques
- Block Ciphers and Data Encryption Standard (DES)
 - Advanced Encryption Standard (AES)
 - Stream Cipher
- Public-Key Cryptography and Rivest-Shamir-Adleman Algorithm (RSA)
 - Key Managements
 - Hash Algorithms
 - Digital Signatures

WHAT IS DATA SECURITY???

- General Introduction
- *Data security
- Categorizing security
- Overview of Cryptology

Overview of the field of cryptology

Encryption & decryption

Original Text

+

=

Encrypted Text

Encryption

Encrypted Text

٦

Secret key

Decryption

Original Text

Number Theory

- ***** Time estimates for doing arithmetic
- * prime numbers

- ***** composite numbers
- ** The greatest common divisor GCD& the least common multiple LCM
 - * Modular arithmetic
- **#** Euler phi-function $\varphi(n)$
- ***** relatively prime
- ***** The Euclidean algorithm
- **#** Euclid's Extended Algorithm

Classical Encryption Techniques

1. Substitution encryption techniques

the plaintext
$$x = (x_0, x_1, \dots, x_{n-1})$$
 are substituted by the letters in a ciphertext alphabet: $x = (x_0, x_1, \dots, x_{n-1})$ $(y_0, y_1, \dots, y_{n-1})$.

2. Transposition Encryption Techniques

Ciphertext results when the positions of letters in the plaintext

$$x = (x_0, x_1, \dots, x_{n-1})$$
 are rearranged $(x_0, x_1, \dots, x_{n-1})$
$$(x_{\pi 0}, x_{\pi 1}, \dots, x_{n-1})$$
 according to a permutation $\pi = (\pi_0, \pi_1, \dots, \pi_{n-1})$.

Substitution Encryption Techniques

- * Monoalphabetic substitution ciphers.
- # Homophonic substitution ciphers.
- ** Polygraphic substitution ciphers.
- * Polyalphabetic substitution ciphers.

Monoalphabetic substitution ciphers.

Shift cipher

General monoalphabetic substitution/Random letter pairs

Caesar Cipher

random permutation

Playfair Chipher

Polyalphabetic substitution ciphers.

Vigenere technique

Cryptanalysis of the Substitution Cipher

The frequency analysis

The Transposition Cipher

Block cipher and data encryption standard

- * Simplified Data Encryption Standard (SDES)
- * Data Encryption Standard (DES)
- * The Advanced Encryption Standard (AES)

SDES

- * An initial permutation (IP);
- * A complex function
- * A simple permutation function that switches (SW) the two halves of the data
- A complex function
- * A permutation function that is inverse of the initial permutation.

DES

AES

	Key Length (Nk words)	Block Size (Nb words)	Number of Rounds (Nr)
AES-128	4	4	10
AES-192	6	4	12
AES-256	8	4	14

Public-Key Cryptography

Goals

- ☐ To review public-key cryptography.
- ☐ To demonstrate that confidentiality and authentication can be achieved simultaneously with public-key cryptography.
- ☐ To review the Rivest-Shamir-Adleman (RSA) algorithm for public-key cryptography

V1

- **Key Managements**
- •Message Authentication
- Hash Algorithms
- •Digital Signatures

<u>REFERENES</u>

- •Allen, Julia H. (2001). The CERT Guide to System and Network Security Practices. Boston, MA: Addison.
- •Layton, Timothy P. (2007). Information Security: Design, Implementation, Measurement, and Compliance. Boca Raton, FL: Auerbach publications.
- •McNab, Chris (2004). Network Security Assessment. Sebastopol, CA: O'Reilly. Peltier.
- •Thomas R. (2001). Information Security Risk Analysis. Boca Raton, FL: Auerbach publications.
- •F. L. Bauer (2007). Decrypted Secrets: Methods and Maxims of Cryptology. Springer, 4th edition.
- •N. Biggs (2002). Discrete Mathematics. Oxford University Press, New York, 2nd edition.
- •C. Cid, S. Murphy, and M. Robshaw (2006). Algebraic Aspects of the Advanced Encryption Standard, Springer.
- •Bart Preneel. MDC-2 and MDC-4. In Henk C. A. van Tilborg, editor, Encyclopedia of Cryptography and Security. Springer, (2005).
- •T. Collins, D. Hopkins, S. Langford, and M. Sabin (1997). Public key cryptographic apparatus and method. United States Patent US.
- •Yehuda Lindell (2003). Composition of Secure Multi-Party Protocols: A Comprehensive Study, Springer.
- •W. Stallings (2005). Cryptography and Network Security: Principles and Practice. Prentice Hall, 4th edition.

•2016 – 2017 University of Basrah - College of Education for Pure Science - Computer Science Department

Prof. Dr. Eng. Hamid Ali AL-Asadi

Thank you for your Attention